
Chapter 4: Modifying Pixels in a Range

Reminder: Pixels are in a matrix
 Matrices have two dimensions: A height and a width
 We can reference any element in the matrix with (x,y)

or (horizontal, vertical)
 We refer to those coordinates as index numbers or

indices
 We sometimes want to know where a pixel is, and

getPixels doesn’t let us know that.

Pixels in a Matrix
 “Barbara.jpg” has

 height 293 (bottommost
index is 292) and

 width 221 (rightmost
index is 220)

Introducing the function range
 Range returns a sequence between its first two

inputs, possibly using a third input as the increment

>>> print range(1,4)
[1, 2, 3]
>>> print range(-1,3)
[-1, 0, 1, 2]
>>> print range(1,10,2)
[1, 3, 5, 7, 9]
>>> print range(3)
[0,1,2]

Notice:
• End value is never included.
• range(0,10) ends at 9.

• If you leave out a start
value, it’s assumed to be zero.

Side Note:
That thing in [] is a sequence
>>> a=[1,2,3]
>>> print a
[1, 2, 3]
>>> a = a + 4
An attempt was made to call a
function with a parameter of an
invalid type
>>> a = a + [4]
>>> print a
[1, 2, 3, 4]
>>> a[0]
1

We can assign names to
sequences, print them,
add items to sequences,
and access individual
pieces of them.

We can also use for
loops to process each
element of a sequence.

We can use range to generate
index numbers
We’ll do this by working the range from

0 to the height-1, and 0 to the width-1.
 Using the range function will make it easy to start from

0 and stop before the end value.

But we’ll need more than one loop.
 Each for loop can only change one variable,

and we need two for indexing a matrix

Working the pixels by number
 To use range, we’ll have to use nested loops

 One to walk the width, the other to walk the height
 Be sure to watch your blocks (i.e., indentation) carefully!

def increaseRed2(picture):
 for x in range(0,getWidth(picture)):
 for y in range(0,getHeight(picture)):
 px = getPixel(picture,x,y)
 value = getRed(px)
 setRed(px,value*1.1)

def increaseRed2(picture):
 for x in range(0,getWidth(picture)):
 for y in range(0,getHeight(picture)):
 px = getPixel(picture,x,y)
 value = getRed(px)
 setRed(px,value*1.1)

The first time
through the first
loop, x is the name
for 0.

We’ll be processing
the first column of
pixels in the picture.

def increaseRed2(picture):
 for x in range(0,getWidth(picture)):
 for y in range(0,getHeight(picture)):
 px = getPixel(picture,x,y)
 value = getRed(px)
 setRed(px,value*1.1)

Next, we set y to 0.
We’re now going to
process each of the
pixels in the first
column.

def increaseRed2(picture):
 for x in range(0,getWidth(picture)):
 for y in range(0,getHeight(picture)):
 px = getPixel(picture,x,y)
 value = getRed(px)
 setRed(px,value*1.1)

With x = 0 and y =
0, we get the
leftmost pixel and
increase its red by
10%

def increaseRed2(picture):
 for x in range(0,getWidth(picture)):
 for y in range(0,getHeight(picture)):
 px = getPixel(picture,x,y)
 value = getRed(px)
 setRed(px,value*1.1)

Next we set y to 1 (next
value in the sequence
range(0,getHeight(picture))

def increaseRed2(picture):
 for x in range(0,getWidth(picture)):
 for y in range(0,getHeight(picture)):
 px = getPixel(picture,x,y)
 value = getRed(px)
 setRed(px,value*1.1)

x is still 0, and now y is
1, so increase the red
for pixel (0,1)

We continue along this way, with y taking on
every value from 0 to the height of the
picture (minus 1).

def increaseRed2(picture):
 for x in range(0,getWidth(picture)):
 for y in range(0,getHeight(picture)):
 px = getPixel(picture,x,y)
 value = getRed(px)
 setRed(px,value*1.1)

Now that we’re done with
the loop for y, we get back
to the FOR loop for x.
x takes on the value 1, and
we go back to the y loop to
process all the pixels in the
column x=1.

What can you do if you know where the pixels
are? One answer: Mirroring
 Imagine a mirror horizontally across the picture,

or vertically
 What would we see?
 How do generate that digitally?

 We simply copy the colors of pixels from one place to
another

Work it out with matrices
 mirrorPoint is halfway across: getWidth(picture)/2

If left pixel is
at (x,y), right
pixel is at
(width-x-1,y)

def mirrorVertical(source):
 mirrorPoint = getWidth(source) / 2
 width = getWidth(source)
 for y in range(0,getHeight(source)):
 for x in range(0,mirrorPoint):
 leftPixel = getPixel(source,x,y)
 rightPixel = getPixel(source,width - x - 1,y)
 color = getColor(leftPixel)
 setColor(rightPixel,color)

def mirrorHorizontal(source):
 mirrorPoint = getHeight(source) / 2
 height = getHeight(source)
 for x in range(0,getWidth(source)):
 for y in range(0,mirrorPoint):
 topPixel = getPixel(source,x,y)
 bottomPixel = getPixel(source,x,height - y - 1)
 color = getColor(topPixel)
 setColor(bottomPixel,color)

Of course!

What if we wanted to copy bottom to top?
 Very simple: Swap the order of pixels in the bottom

lines

def mirrorBotTop(source):
 mirrorPoint = getHeight(source) / 2
 height = getHeight(source)
 for x in range(0,getWidth(source)):
 for y in range(0,mirrorPoint):
 topPixel = getPixel(source,x,y)
 bottomPixel = getPixel(source,x,height - y - 1)
 color = getColor(bottomPixel)
 setColor(topPixel,color)

Mirroring bottom to top

Doing something useful with mirroring
 Mirroring can be used to

create interesting effects,
but it can also be used to
create realistic effects.

 Consider this image from
a trip to Athens, Greece.
 Can we “repair” the temple

by mirroring the complete
part onto the broken part?

Figuring out where to mirror
 Use MediaTools to find the mirror point and the

range that we want to copy

Writing functions for specific files…
generally
 The function to mirror the temple needs to work

for one and only one file.
 But we still don’t want to write out the whole

path.
 setMediaPath() allows us to pick a directory where our media will

be stored.
 getMediaPath(filename) will generate the entire path for us to the

filename in the media directory
 THIS ONLY WORKS WHEN WE’RE ACCESSING FILES IN THE

MEDIA DIRECTORY AND WHERE WE HAVE SET THE PATH
FIRST!

Some Utility Functions
 If you know the name of the file, searching for it with

pickAFile() feels tedious
 You can set and get a media folder (path) for

remembering a place where your media will be
coming from (or going to)
 setMediaPath() lets you pick a file in your media

folder
 getMediaPath(basefilename) lets you generate a

complete filename out of only the last part

Example
>>> setMediaPath()
New media folder: C:\Documents and Settings\Mark
Guzdial\My Documents\mediasources\
>>> getMediaPath("barbara.jpg")
'C:\\Documents and Settings\\Mark Guzdial\\My
Documents\\mediasources\\barbara.jpg'
>>> barb=makePicture(getMediaPath("barbara.jpg"))

Program to mirror the temple
def mirrorTemple():
 source = makePicture(getMediaPath("temple.jpg"))
 mirrorPoint = 276
 for x in range(13,mirrorPoint):
 for y in range(27,97):
 pleft = getPixel(source,x,y)
 pright = getPixel(source,mirrorPoint + mirrorPoint - 1 - x,y)
 setColor(pright,getColor(pleft))
 show(source)
 return source

Did it really work?
 It clearly did the

mirroring, but that
doesn’t create a 100%
realistic image.

 Check out the shadows:
Which direction is the
sun coming from?

Understanding the Temple Fix
 What is the very first transfer of pixels from and to?

Which (x,y) pixel from? Which (x,y) pixel to?
 What is second?
 How many pixels get copied?

Adding print statements to see what’s happening
def mirrorTemple():
 source = makePicture(getMediaPath("temple.jpg"))
 mirrorPoint = 276
 for x in range(13,mirrorPoint):
 for y in range(27,97):
 print "Copying color from",x,y, " to ",mirrorPoint + mirrorPoint - 1 - x, y
 pleft = getPixel(source,x,y)
 pright = getPixel(source,mirrorPoint + mirrorPoint - 1 - x,y)
 setColor(pright,getColor(pleft))
 show(source)
 return source

First pixels are either side of the mirrorpoint, then
moving down
>>> p2=mirrorTemple()
Copying color from 13 27

to 538 27
Copying color from 13 28

to 538 28
Copying color from 13 29

to 538 29

Counting pixels
def mirrorTemple():
 source = makePicture(getMediaPath("temple.jpg"))
 mirrorPoint = 276
 count = 0
 for x in range(13,mirrorPoint):
 for y in range(27,97):
 pleft = getPixel(source,x,y)
 pright = getPixel(source,mirrorPoint + mirrorPoint - 1 - x,y)
 setColor(pright,getColor(pleft))
 count = count + 1
 show(source)
 print "We copied",count,"pixels"
 return source

Counting pixels

 Where did that come from?
 How many rows? Y goes from 27 to 97

 = 70 rows of pixels
 How many columns? X goes from 13 to 276

 = 263 columns of pixels
 70 * 263 = 18410

>>> p2=mirrorTemple()
We copied 18410 pixels

Moving pixels across pictures
 We’ve seen using index variables to track the pixel

position we’re working with in a picture.
 We can copy between pictures, if we keep track of:

 The source index variables
 Where we’re getting the pixels from

 The target index variables
 Where we’re putting the pixels at

 (Not really copying the pixels: Replicating their color.)

What can you do then?
 What can you do when copying from one picture

to another?
 Collages: Copy several pictures onto one
 Cropping: You don’t have to take the whole

picture
 Scaling: Make a picture smaller, or larger when

copying it

Blank files in mediasources
 getMediaPath(“7inX95in.jpg”) gives you a JPEG

canvas which prints out as 7x9.5 inches
 Letter-sized page with 1 inch margins

 getMediaPath(“640x480.jpg”) gives a JPEG canvas at a
common size: 640 pixels across by 480 pixels high

Copying pixels
 In general, what we want to do is to keep track of a

sourceX and sourceY, and a targetX and targetY.
 We increment (add to them) in pairs

 sourceX and targetX get incremented together
 sourceY and targetY get incremented together

 The tricky parts are:
 Setting values inside the body of loops
 Incrementing at the bottom of loops

Copying Barb to a canvas
def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 0
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Comments
 Python ignores from “#” through the rest of the line
 If you start a line with “#”, the whole line is ignored
 Why do we want lines to be ignored?

 To be able to leave notes to ourselves or someone else
about how the program works

Walking through the copying function

 First, get the source (barb) and target (canvas) files
and pictures as names we can use later.
def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 0
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

 We get the color of the
pixel at sourceX and
sourceY

 We set (copy) the color
to the pixel in the target
picture at targetX and
targetY

def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)

 # Now, do the actual copying
 targetX = 0
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):

 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Setting up the copy loop
 targetX gets set to 0 at

the beginning
 sourceX will range

across the width of the
source picture

 INSIDE the loop, we set
targetY to 0
 Inside because we want it to

start at 0 each time we do a
new X

 sourceY will range from
0 to one less height of
source

def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)

 # Now, do the actual copying
 targetX = 0
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

 Just before we end the
sourceY loop, we
increment targetY
 It’s now set up for

the next time
through the loop

 It’s set correctly for
the next value of
sourceY

 Just before we end the
sourceX loop, we
increment the targetX
 Note carefully the

indentation to figure
out which goes with
which loop

def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)

 # Now, do the actual copying
 targetX = 0
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):

 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)

 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

What’s this naming something as itself?
 targetX = targetX + 1
 This isn’t really naming something as itself

 targetX + 1 is evaluated
 It will result in the number after targetX

 targetX = then sets the value of targetX
 The result is that targetX gets incremented by 1

 At the very end, we show
the source and target

 And return the modified
target.

def copyBarb():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)

 # Now, do the actual copying
 targetX = 0
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):

 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Works either way
def copyBarb2():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 0
 for targetX in range(0,getWidth(barb)):
 sourceY = 0
 for targetY in range(0,getHeight(barb)):
 color =

getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1
 show(barb)
 show(canvas)
 return canvas

As long as we increment
sourceX and targetX
together, and sourceY
and targetY together, it
doesn’t matter which is
in the for loop and which
is incremented via
expression

Transformation =
Small changes in copying
 Making relatively small changes in this basic copying

program can make a variety of transformations.
 Change the targetX and targetY, and you copy wherever

you want
 Cropping: Change the sourceX and sourceY range, and

you copy only part of the program.
 Rotating: Swap targetX and targetY, and you end up

copying sideways
 Scaling: Change the increment on sourceX and

sourceY, and you either grow or shrink the image.

Copying into the middle of the canvas
def copyBarbMidway():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 100
 for sourceX in range(0,getWidth(barb)):
 targetY = 100
 for sourceY in range(0,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Copying: How it works
 Here’s the initial setup:

Copying: How it works 2
 After incrementing the

sourceY and targetY once
(whether in the for or via
expression):

Copying: How it works 3
 After yet another

increment of sourceY
and targetY:

 When we finish that
column, we increment
sourceX and targetX, and
start on the next column.

Copying: How it looks at the end
 Eventually, we copy every

pixel

Making a collage
 Could we do something

to the pictures we copy
in?
 Sure! Could either apply one of

those functions before copying,
or do something to the pixels
during the copy.

 Could we copy more
than one picture!
 Of course! Make a collage!

def createCollage():
 flower1=makePicture(getMediaPath("flower1.jpg"))
 print flower1
 flower2=makePicture(getMediaPath("flower2.jpg"))
 print flower2
 canvas=makePicture(getMediaPath("640x480.jpg"))
 print canvas
 #First picture, at left edge
 targetX=0
 for sourceX in range(0,getWidth(flower1)):
 targetY=getHeight(canvas)-getHeight(flower1)-5
 for sourceY in range(0,getHeight(flower1)):
 px=getPixel(flower1,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 #Second picture, 100 pixels over
 targetX=100
 for sourceX in range(0,getWidth(flower2)):
 targetY=getHeight(canvas)-getHeight(flower2)-5
 for sourceY in range(0,getHeight(flower2)):
 px=getPixel(flower2,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1

#Third picture, flower1 negated
 negative(flower1)
 targetX=200
 for sourceX in range(0,getWidth(flower1)):
 targetY=getHeight(canvas)-getHeight(flower1)-5
 for sourceY in range(0,getHeight(flower1)):
 px=getPixel(flower1,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 #Fourth picture, flower2 with no blue
 clearBlue(flower2)
 targetX=300
 for sourceX in range(0,getWidth(flower2)):
 targetY=getHeight(canvas)-getHeight(flower2)-5
 for sourceY in range(0,getHeight(flower2)):
 px=getPixel(flower2,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 #Fifth picture, flower1, negated with decreased red
 decreaseRed(flower1)
 targetX=400
 for sourceX in range(0,getWidth(flower1)):
 targetY=getHeight(canvas)-getHeight(flower1)-5
 for sourceY in range(0,getHeight(flower1)):
 px=getPixel(flower1,sourceX,sourceY)
 cx=getPixel(canvas,targetX,targetY)
 setColor(cx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1
 show(canvas)
 return(canvas)

Page 91-92 (2ed edition)

Can we make that easier?
 The collage code is long,

yet simple.
 It’s the same thing over-

and-over.
 We can generalize that

copying loop, and with
parameters, use it in
many places.

def copy(source, target, targX, targY):
 targetX = targX
 for sourceX in range(0,getWidth(source)):
 targetY = targY
 for sourceY in

range(0,getHeight(source)):
 px=getPixel(source,sourceX,sourceY)
 tx=getPixel(target,targetX,targetY)
 setColor(tx,getColor(px))
 targetY=targetY + 1
 targetX=targetX + 1

Exact same collage!
def createCollage2():

flower1=makePicture(getMediaPath("flowe
r1.jpg"))

 print flower1

flower2=makePicture(getMediaPath("flowe
r2.jpg"))

 print flower2

canvas=makePicture(getMediaPath("640x4
80.jpg"))

 print canvas
 #First picture, at left edge

copy(flower1,canvas,0,getHeight(canvas)-
getHeight(flower1)-5)

 #Second picture, 100 pixels over

copy(flower2,canvas,100,getHeight(canvas)
-getHeight(flower2)-5)

#Third picture, flower1 negated
 negative(flower1)

copy(flower1,canvas,200,getHeight(canvas)
-getHeight(flower1)-5)

 #Fourth picture, flower2 with no blue
 clearBlue(flower2)

copy(flower2,canvas,300,getHeight(canvas)
-getHeight(flower2)-5)

 #Fifth picture, flower1, negated with
decreased red

 decreaseRed(flower1)

copy(flower1,canvas,400,getHeight(canvas)
-getHeight(flower2)-5)

 return canvas

Rotating the copy
def copyBarbSideways():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 0
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetY,targetX), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Rotating: How it works
 We increment the same,

but we use targetX for
the Y coordinate and
targetY for the X
coordinate

Rotate: How it ends
 Same amount of

increment, even same
values in the variables,
but a different result.

Doing a real
rotation

def rotateBarbSideways():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 0
 width = getWidth(barb)
 for sourceX in range(0,getWidth(barb)):
 targetY = 0
 for sourceY in range(0,getHeight(barb)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetY,width - targetX

- 1), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Cropping: Just the face
def copyBarbsFace():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 targetX = 100
 for sourceX in range(45,200):
 targetY = 100
 for sourceY in range(25,200):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 targetY = targetY + 1
 targetX = targetX + 1
 show(barb)
 show(canvas)
 return canvas

Cropping,
another
way

def copyBarbsFace2():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+(200-45)):
 sourceY = 25
 for targetY in range(100,100+(200-25)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 1
 sourceX = sourceX + 1
 show(barb)
 show(canvas)
 return canvas

Scaling
 Scaling a picture (smaller or larger) has to do with

sampling the source picture differently
 When we just copy, we sample every pixel
 If we want a smaller copy, we skip some pixels

 We sample fewer pixels
 If we want a larger copy, we duplicate some pixels

 We over-sample some pixels

Scaling the picture down
def copyBarbsFaceSmaller():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)/2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)/2)):
 color = getColor(getPixel(barb,sourceX,sourceY))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 2
 sourceX = sourceX + 2
 show(barb)
 show(canvas)
 return canvas

Scaling Up: Growing the picture
 To grow a picture, we

simply duplicate some
pixels

 We do this by
incrementing by 0.5, but
only use the integer part.

>>> print int(1)
1
>>> print int(1.5)
1
>>> print int(2)
2
>>> print int(2.5)
2

Scaling the picture up
def copyBarbsFaceLarger():
 # Set up the source and target pictures
 barbf=getMediaPath("barbara.jpg")
 barb = makePicture(barbf)
 canvasf = getMediaPath("7inX95in.jpg")
 canvas = makePicture(canvasf)
 # Now, do the actual copying
 sourceX = 45
 for targetX in range(100,100+((200-45)*2)):
 sourceY = 25
 for targetY in range(100,100+((200-25)*2)):
 color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
 setColor(getPixel(canvas,targetX,targetY), color)
 sourceY = sourceY + 0.5
 sourceX = sourceX + 0.5
 show(barb)
 show(canvas)
 return canvas

Scaling up: How it works
 Same basic setup as

copying and rotating:

Scaling up: How it works 2
 But as we increment by

only 0.5, and we use the
int() function, we end
up taking every pixel
twice.

 Here, the blank pixel at
(0,0) in the source gets
copied twice onto the
canvas.

Scaling up: How it works 3
 Black pixels gets copied

once…

Scaling up: How it works 4
 And twice…

Scaling up: How it ends up
 We end up in the same

place in the source, but
twice as much in the
target.

 Notice the degradation:
 Gaps that weren’t there

previously
 Curves would get “choppy”:

Pixelated

What to do?
 How do we clear up the degradation of scaling up?
 Variety of techniques, but mostly following the same

basic idea:
 Use the pixels around to figure out what color a new

pixel should be, then somehow (e.g., by averaging)
compute the right color.

 Different techniques look at different pixels and
compute different averages in different ways.

A blurring recipe
def blur(pic,size):
 for pixel in getPixels(pic):
 currentX = getX(pixel)
 currentY = getY(pixel)
 r = 0
 g = 0
 b = 0
 count = 0
 for x in range(currentX - size,currentX + size):
 for y in range(currentY - size, currentY + size):
 if(x<0) or (y<0) or (x >= getWidth(pic)) or (y >=getHeight(pic)):
 pass # Skip if we go off the edge
 else:
 r = r + getRed(getPixel(pic,x,y))
 g = g + getGreen(getPixel(pic,x,y))
 b = b + getBlue(getPixel(pic,x,y))
 count = count + 1
 newColor = makeColor(r/count,g/count,b/count)
 setColor(pixel,newColor)

We’ll see pass and
else later, but you can
probably get a sense
here of what’s going
on.

Blurring out the pixelation

Things to try:
 Can you come up with general copy, rotate, copy, and

scale functions?
 Take input pictures and parameters
 Return the canvas the correct transformation applied

 Also think about generalizing the transformations:
 Scaling up and down by non-integer amounts
 Rotating by something other than 90 degree

increments

	Introduction to Computing and Programming in Python: A Multimedia Approach
	Chapter Learning Goals
	Reminder: Pixels are in a matrix
	Pixels in a Matrix
	Introducing the function range
	Side Note: That thing in [] is a sequence
	We can use range to generate index numbers
	Working the pixels by number
	What’s going on here?
	Now, the inner loop
	Process a pixel
	Next pixel
	Process pixel (0,1)
	Finally, next column
	What can you do if you know where the pixels are? One answer: Mirroring
	Work it out with matrices
	Recipe for mirroring
	Can we do it with a horizontal mirror?
	Of course!
	What if we wanted to copy bottom to top?
	Mirroring bottom to top
	Doing something useful with mirroring
	Figuring out where to mirror
	Writing functions for specific files…generally
	Some Utility Functions
	Example
	Program to mirror the temple
	Did it really work?
	Understanding the Temple Fix
	Adding print statements to see what’s happening
	First pixels are either side of the mirrorpoint, then moving down
	Counting pixels
	Slide 33
	Moving pixels across pictures
	What can you do then?
	Blank files in mediasources
	Copying pixels
	Copying Barb to a canvas
	Comments
	Walking through the copying function
	The actual copy
	Setting up the copy loop
	Ending the loop
	What’s this naming something as itself?
	Ending the copy function
	Works either way
	Transformation = Small changes in copying
	Copying into the middle of the canvas
	Copying: How it works
	Copying: How it works 2
	Copying: How it works 3
	Copying: How it looks at the end
	Making a collage
	Slide 54
	Can we make that easier?
	Exact same collage!
	Rotating the copy
	Rotating: How it works
	Rotate: How it ends
	Doing a real rotation
	Cropping: Just the face
	Cropping, another way
	Scaling
	Scaling the picture down
	Scaling Up: Growing the picture
	Scaling the picture up
	Scaling up: How it works
	Scaling up: How it works 2
	Scaling up: How it works 3
	Scaling up: How it works 4
	Scaling up: How it ends up
	What to do?
	A blurring recipe
	Blurring out the pixelation
	Things to try:

